Exercise 35

(a) The curve $y=1 /\left(1+x^{2}\right)$ is called a witch of Maria Agnesi. Find an equation of the tangent line to this curve at the point $\left(-1, \frac{1}{2}\right)$.
(b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.

Solution

Start by finding the slope of y at $x=-1$. Evaluate the derivative using the quotient rule.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(\frac{1}{1+x^{2}}\right) \\
& =\frac{\left[\frac{d}{d x}(1)\right]\left(1+x^{2}\right)-\left[\frac{d}{d x}\left(1+x^{2}\right)\right](1)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{(0)\left(1+x^{2}\right)-(2 x)(1)}{\left(1+x^{2}\right)^{2}} \\
& =-\frac{2 x}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

Evaluate it at $x=-1$.

$$
y^{\prime}(-1)=\frac{1}{2}
$$

Therefore, the equation of the tangent line with slope $1 / 2$ that goes through $\left(-1, \frac{1}{2}\right)$ is

$$
y-\frac{1}{2}=\frac{1}{2}(x+1) .
$$

